- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Kopp, Gene S (2)
-
Bober, Jonathan W (1)
-
Du, Lara (1)
-
Fretwell, Daniel (1)
-
Lagarias, Jeffrey C (1)
-
Wooley, Trevor D (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We investigate k-superirreducible polynomials, by which we mean irreducible polynomials that remain irreducible under any polynomial substitution of positive degree at most k. Let F be a finite field of characteristic p. We show that no 2-superirreducible polynomials exist in F[t] when p=2 and that no such polynomials of odd degree exist when p is odd. We address the remaining case in which p is odd and the polynomials have even degree by giving an explicit formula for the number of monic 2-superirreducible polynomials having even degree d. This formula is analogous to that given by Gauss for the number of monic irreducible polynomials of given degree over a finite field. We discuss the associated asymptotic behaviour when either the degree of the polynomial or the size of the finite field tends to infinity.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Kopp, Gene S; Lagarias, Jeffrey C (, Essential Number Theory)We contribute to the theory of orders of number fields. We define a notion of ray class group associated to an arbitrary order in a number field together with an arbitrary ray class modulus for that order (including Archimedean data), constructed using invertible fractional ideals of the order. We show existence of ray class fields corresponding to the class groups. These ray class groups (resp., ray class fields) specialize to classical ray class groups (resp., fields) of a number field in the case of the maximal order, and they specialize to ring class groups (resp., fields) of orders in the case of trivial modulus. We give exact sequences for simultaneous change of order and change of modulus. As a consequence, we identify the ray class field of an order with a given modulus as a specific subfield of a ray class field of the maximal order with a larger modulus. We also uniquely describe each ray class field of an order in terms of the splitting behavior of primes.more » « lessFree, publicly-accessible full text available February 5, 2026
An official website of the United States government
